Skip to content
WONGCW 網誌
  • 首頁
  • 論壇
  • 微博
  • 壁紙下載
  • 免費圖床
  • 視頻下載
  • 聊天室
  • SEO工具
  • 支援中心
  • 表格製作
  • More
    • 在線名片
    • 網頁搜索
    • 天氣預報
    • 二維碼生成器
  • Search Icon

WONGCW 網誌

記錄生活經驗與點滴

困擾數學家25年的“切蘋果”難題被一位華人統計學博士解決了

困擾數學家25年的“切蘋果”難題被一位華人統計學博士解決了

2021-03-02 Comments 0 Comment

如何將蘋果平均一分為二,還能保證它長時間的新鮮?這是一個嚴肅的科學問題,已經困擾了人類數學家25年之久。根據常識,就是要保證果肉暴露在外面的面積最小,也就是切片的面積最小。如果跨越到更高的維度,是否依然成立?

這就是1995年,由三位數學家提出的一個幾何學猜想。

現在,這個難題被一位華人統計學博士,解決了。

成果一經發布,就迅速引起了數學、理論計算機科學、統計學等多個領域的科學家的關注。

他們一致認為,數學大師、菲爾茲獎得主,原本猜想的提出者Jean Bourgain(讓·布爾甘)一定會對這一進展感到興奮。

畢竟,在他去世前(2018年)的幾個月裡還在關心這一問題進展,但終其一生都未能解決。

困擾數學家25年的幾何問題

1984年,著名數學家讓·布爾甘提出了一個猜想。

一個任意維度的凸體,用低一維的平面去平分,那麼存在一個常數c,讓凸體至少存在一個切面的面積大於c。

換句話說,如果你一刀平分“任意維度空間的西瓜”,隨便你怎麼劈,總有一個切面總大於c。

(Ps:以往的科學家用的是蘋果的例子。但準確來說不能選蘋果,因為蘋果上下是凹的。)

在3維空間中,這個結論似乎很好理解,因為無論西瓜長成什麼奇形怪狀,總不可能在每個角度都細長。

像下面這樣的長西瓜,豎直切下去,切面很小,可以你也可以水平切開平分它,這樣切面就會很大。

但在3維世界中正確的事情,到了高維空間卻不一定成立。

這個問題後來被布爾甘自己證明,但數學家們並不滿足於用平面切西瓜,而是希望能找到一個更小的切面,它可以是曲面。

而這恰好是1995年Kannan、Lovász和Simonovits三人提出的KLS猜想關心的問題:用來平分的最小曲面面積是多少?

以二維空間裡的一個三角形為例。

這個最小的“曲面”是一段圓弧。用圓弧來平分一個三角形,中間的線長度最短,而最佳“平面”——直線——的效果略差。

△ 如何用最小“切面”平分三角形(來源:Quanta Magazine)

到了更高維度的空間中,二等分的最佳平面和最佳曲面差距會變大嗎?切面的面積是否和維度d有關?

這個問題已經不再是純粹的數學問題。

普林斯頓大學數學系教授Assaf Naor表示,KLS猜想在純粹的數學和理論計算機科學中都很重要。

KLS猜想的結果,直接關係到隨機行走算法的運行時間,如機器學習模型中採樣問題。

所以最後解決這個幾何問題的學者,都並非幾何學的專家,而是來自計算機界。

用統計方法解決他

經過數學家的抽象,KLS猜想就像一個封裝著氣體的容器,找到最佳切面就是尋找容器的“瓶頸”。

想像一個啞鈴形狀的容器,裡面有一個氣體分子在隨機運動,啞鈴中間連接部分越細,分子就越難跑到另一側。

△啞鈴形的平分切面很小(來源:Yin Tat Lee論文)

現在人們想知道,在高維空間,這個凸的容器最細的地方有多細。(當然,啞鈴並非是凸的。)

2012年,Eldan通過引入一種稱為隨機定位的技術,來降低這個問題與維度上界。(到底是維度d的幾次冪。)

2015年末,華盛頓大學的Vempala和Yin Tat Lee改進了Eldan的隨機定位,以進一步將KLS因子(用於描述瓶頸是否存在)降低到維度的四次根d1/4。

△ KLS猜想的上界不斷降低(來源:同上)

甚至,他們還將冪指數降低到幾乎為0,由於d的0次冪總是等於1,Lee和Vempala似乎證明了KLS因子是一個與維度無關的常數。

他們在arXiv上發布了他們的論文。但是幾天后,這篇文章就被人發現了一個缺陷,他們關於d0的證明是錯的。

之後,二人修改了文章,把界限重新調整到d1/4。幾年來,研究人員認為KLS猜想的探索已經到此終結了。

不過他們還在論文中,保留了d0證明的一些想法。這也為後來的突破埋下伏筆。

他們的論文引起了另一位統計學者Yuansi Chen的注意。

Chen當時是加州大學伯克利分校的統計學研究生,他正在研究隨機採樣方法的混合率。而隨機抽樣是許多類型統計推斷中的關鍵,例如貝葉斯統計。

Chen深入研究文學,花了數週時間試圖填補Lee和Vempala的證明中的空白,但依然沒有解決。

於是他轉變了思路,在Lee和Vempala的思想指導下,他找到了一種方法,採用遞歸來降低KLS因子上界。

經過反复迭代,這種方法將KLS猜想問題再次拉回到d0的上界。

這一結果意味著,高維凸形物體不會有啞鈴那樣的結構。

該定理的結果意味著,在n維凸體中隨機行走,遍歷整個圖形的速度比我們之前預想得要快得多。

這將有助於計算機科學家對不同的隨機採樣算法進行優先級排序。

三個計算機相關的科學家

雖然表面看上去,這三位學者似乎跟數學沒什麼關係。

但仔細翻看他們的履歷,他們都曾跟數學結下了不小的緣分。

首先,直接與研究相關的這位統計學博士後——Yuansi Chen (陳遠思,音譯)。

今年年初,他開始在杜克大學統計科學系擔任助理教授的職位。

主要研究方向是統計機器學習、優化以及在神經科學中的應用,尤其對其中域適應性、穩定性、MCMC採樣算法、卷積神經網絡和計算神經科學中出現的統計問題感興趣。

2019年,他在加州大學伯克利分校統計系獲得博士學位。

其博士生導師是著名華裔統計學家、UC伯克利統計系和電子工程與計算機科學系終身教授鬱彬。

在攻讀博士之前,他還在法國Ecole Polytechnique獲得了應用數學專業的工程師文憑。

隨後,前往在蘇黎世聯邦理工學院ETH Foundations of Data Science(ETH-FDS)做博士後研究。

而啟發Yuansi Chen數學靈感的,是兩位計算機科學家。

Yin Tat Lee (李賢達,音譯)和Santosh S. Vempala。

李賢達,目前是華盛頓大學助理教授,本科畢業於香港中文大學。

2012年從港中文大學畢業後,前往麻省理工學院攻讀博士學位,隨後前往微軟研究院做博士後研究。

他的研究方向主要在算法方面,包括凸優化、凸幾何、譜圖理論和在線算法等廣泛的課題。

以往的研究裡,他曾結合連續數學和離散數學的思想,大幅提升了在計算機科學和優化中許多基本問題的算法,比如線性編程和最大流量問題。

他曾獲得SODA最佳論文獎、NeurIPS 2018最佳論文獎、NSF職業獎。

去年他還獲得了有“諾獎風向標”之稱的斯隆獎,以及美國最大的非政府獎學金之一——帕卡德獎學金。

再來看Santosh S. Vempala,佐治亞理工學院計算機科學教授。

主要研究領域是理論計算機科學,還抽樣、學習、優化和數據分析的算法工具;隨機線性代數,高維幾何。

他曾在卡內基梅隆大學攻讀博士學位,本科畢業於印度理工學院的計算機專業,曾獲NSF職業獎、斯隆獎等獎項。

在來到佐治亞理工學院之前,他曾擔任MIT應用數學系擔任教授、UC伯克利米勒研究員。

數學家:不可思議

隨著陳遠思論文一發布,迅速就引起了數學界的學者關注。

不光是因為此前的錯誤證明,還由於陳遠思這個名字在數學界十分陌生,研究人員對待這一成果十分謹慎。

但他的方法很容易被驗證。

早期研究過KLS猜想的以色列數學家BoázKlartag,就在第一時間看了論文。

我基本上立即停止了我正在做的一切事情,並檢查了這篇論文。

這篇論文是100%正確的,這一點毫無疑問。

除了一眾數學家關注之外,還引起了理論數學家、統計學等領域的注意。

哈佛大學計算機科學教授、微軟研究院前新英格蘭首席研究員Boaz Barak則發推祝賀。

並表示這是一個非常重要的突破,加速了對近似凸體體積的研究。

但點贊祝賀之餘,也有不少學者表示十分遺憾。

因為提出這一猜想的人菲爾茲獎得主布爾甘已於2018年去世,如果他還在的話,一定會為這一進展感到興奮。

據QuantaMagazine報導,布爾甘曾在去世前幾個月,聯繫了他的朋友、特拉維夫大學教授Vitali Milman,詢問這一猜想是否有任何進展,想在離開之前知道答案。

但Vitali Milman說,布爾甘在這一問題上,花費的時間和投入的精力比任何其他問題多得多。沒想到,最後這個問題卻被統計學解決了。

分享此文:

  • 按一下即可分享至 X(在新視窗中開啟) X
  • 按一下以分享至 Facebook(在新視窗中開啟) Facebook
  • 分享到 WhatsApp(在新視窗中開啟) WhatsApp
  • 按一下以分享到 Telegram(在新視窗中開啟) Telegram
  • 分享到 Pinterest(在新視窗中開啟) Pinterest
  • 分享到 Reddit(在新視窗中開啟) Reddit
  • 按一下即可以電子郵件傳送連結給朋友(在新視窗中開啟) 電子郵件
  • 點這裡列印(在新視窗中開啟) 列印

相關


網絡資訊

Post navigation

PREVIOUS
家人開特斯拉剎車失靈撞車網友怒砸2千塊號召轉發曝光微博
NEXT
西湖大學能招本科生了!首次確定5大本科專業

發表迴響取消回覆

這個網站採用 Akismet 服務減少垃圾留言。進一步了解 Akismet 如何處理網站訪客的留言資料。

More results...

Generic filters
Exact matches only
Search in title
Search in content
Search in excerpt
Filter by 分類
網站公告
Featured
限時免費
Windows 軟件下載
系統軟件
辦公軟件
圖像處理
影音媒體
網絡軟件
應用軟件
Mac 軟件下載
安卓軟件下載
網絡資訊
Mac資訊
Linux資訊
VPS資訊
NASA資訊
WordPress資訊
WeChat資訊
PHP資訊
教學資源
開源程序
網頁工具
SEO工具
醫療健康
其他資訊
Content from
Content to
2021 年 3 月
一 二 三 四 五 六 日
1234567
891011121314
15161718192021
22232425262728
293031  
« 2 月   4 月 »

分類

  • 網站公告
  • 限時免費
  • Windows 軟件下載
  • 系統軟件
  • 辦公軟件
  • 圖像處理
  • 影音媒體
  • 網絡軟件
  • 應用軟件
  • Mac 軟件下載
  • 安卓軟件下載
  • 網絡資訊
  • Mac資訊
  • Linux資訊
  • VPS資訊
  • NASA資訊
  • WordPress資訊
  • WeChat資訊
  • PHP資訊
  • 教學資源
  • 開源程序
  • 網頁工具
  • SEO工具
  • 醫療健康
  • 其他資訊

彙整

近期文章

  • 索尼又鎖區過百國家無法遊玩《星刃》 2025-05-16
  • 育碧將下架多款經典遊戲公司稱其有權這麼做 2025-05-16
  • 川普急簽中東AI大單惹惱對華強硬派 2025-05-16
  • 美教授AI講義漏洞百出大學生怒討8000美元學費 2025-05-16
  • 奧特曼嘲諷馬斯克AI翻車:追求真相的AI卻在輸出陰謀論 2025-05-16
  • 東南亞人群基因體研究領域取得里程碑突破 2025-05-16
  • 雷軍最新演講曝光:一場意外給小米帶來巨大質疑不再是產業新人 2025-05-16
  • “中東矽谷”?美國、阿聯酋宣布將聯手打造5吉瓦超級AI園區 2025-05-16
  • Google One訂閱服務的用戶數量達1.5億 2025-05-16
  • 巴菲特第一季大幅減持銀行股蘋果仍是最大重倉股 2025-05-16

熱門文章與頁面︰

  • 您可以在Windows 11 24H2 中找回WordPad
  • 「三體運算」衛星星座成功發射一箭12星
  • 華為折疊PC將在5月19日正式發布
  • NVIDIA對川普的迎合促成了AI技術擴散限制的逆轉以及對華為的進一步壓制
  • 黃仁勳將出席台北電腦展成焦點更多AI合作曝光
  • 假期3天不調休端午假期火車票即將開售
  • Waymo透露第六代無人駕駛計程車細節:成本更低、功能更強
  • 76%美國汽車高層認為中國電動車登陸美國是遲早的事
  • 英偉達CEO黃仁勳:不會使用人工智慧的人將失業
  • 華龍一號全球首堆連續安全穩定運作1000天:輸送清潔電力超370億度

投遞稿件

歡迎各界人士投遞稿件到admin@wongcw.com

請提供以下資料:

1.你的名字

2.你的電郵

3.分類目錄

4.文章標題

5.文章摘要

6.文章內容

7.文章來源

 

聯繫我們

查詢,投稿,商務合作:
​admin@wongcw.com
​技術支援:
​support@wongcw.com
​客户服務:
​cs@wongcw.com

QQ群:833641851

快帆

MALUS

極度掃描

DMCA.com Protection Status

WONGCW 網誌

  • 免責聲明
  • 捐助我們
  • ThemeNcode PDF Viewer
  • ThemeNcode PDF Viewer SC
  • Events

服務器提供

本站使用之服務器由ikoula提供。

聯繫我們

查詢,投稿,商務合作:
​admin@wongcw.com
​技術支援:
​support@wongcw.com
​客户服務:
​cs@wongcw.com

QQ群:833641851

© 2025   All Rights Reserved.